Geometry: Proving Triangles Congruent Tip Sheet

Here's a resource sheet to help you use SSS, SAS, AAS, ASA, or HL (right triangles)

If you have an overlapping side

$$
\overline{\mathrm{IK}} \cong \overline{\mathrm{IK}} \quad \rightarrow \quad \text { Reflexive Property }
$$

If you have vertical angles (bowtie shape)
$\angle \mathrm{ACB} \cong \angle \mathrm{DCE} \rightarrow$ V.A.T

If you have right angles
$\angle \mathrm{JKL}$ and $\angle \mathrm{ONM}$ are right angles \rightarrow Given
$\angle \mathrm{JKL} \cong \angle$ ONM \rightarrow All right angles are congruent

$\triangle \mathrm{JKL} \& \triangle \mathrm{ONM}$ are right triangles \rightarrow def of right Δ (use before HL)

If you have a midpoint
X is the midpoint of $\overline{\mathrm{WY}} \rightarrow$ Given
$\overline{\mathrm{W}} \cong \overline{\mathrm{Y}} \mathrm{X} \rightarrow$ definition of midpoint

(Continued on other side)

If you have perpendicular segments

$\overline{\mathrm{SQ}} \perp \overline{\mathrm{PR}} \rightarrow$ Given
\angle PQS \& \angle RQS are right angles \rightarrow def of perpendicular

$\angle \mathrm{PQS} \cong \angle$ RQS $\quad \rightarrow$ all right angles are congruent
\triangle PQS \& \triangle RQS are right triangles \rightarrow def of right triangle (use before HL)

If you have an angle bisector
$\overline{\mathrm{MT}}$ bisects $\angle \mathrm{ATH} \rightarrow$ Given
$\angle \mathrm{ATM} \cong \angle \mathrm{HTM} \rightarrow$ definition of angle bisector

If you have a perpendicular \perp bisector
$\overline{\mathrm{IK}}$ is the perpendicular bisector of $\overline{\mathrm{HJ}} \rightarrow$ Given
\angle IKH \& $\angle^{\text {IKJ }}$ are right angles \rightarrow def of perpendicular
$\angle \mathrm{IKH} \cong \angle \mathrm{IKJ} \rightarrow$ all right angles are congruent

$\overline{\mathrm{HK}} \cong \overline{\mathrm{JK}} \rightarrow$ definition of bisector

